CÁLCULOS ESTEQUIOMÉTRICOS

Reacciones químicas:

- A) Metales + O₂ (Metales: Na, Mg, Fe, Zn, Al) à Óxidos del metal (Na₂O, MgO, Fe₂O₃, FeO, ZnO, Al₂O₃)
- B) No metales + O₂ (No metales: C, S, H) à óxidos no metálicos (CO₂, CO, SO₂, H₂O)
- C) Combustiones de materiales orgánicos en presencia de oxígeno:

Compuesto orgánico (Metano, Etano, Propano, Butano, Etanol) + O2 à CO2 + H2O

Nota:

- Metano : CH₄
- Etano: CH₃-CH₃ (C₂H₆)
- Propano: CH₃-CH₂-CH₃ (C₃H₈)
- Butano: CH_3 - CH_2 - CH_2 - CH_3 (C_4H_{10})
- Etanol (alcohol etílico): CH₃-CH₂OH (C₂H₆O)
- D) Ácidos con metales:

Ácidos (HCl, H₂SO₄, HNO₃) + Metales (Mg, Zn) à à Sal del ácido (MgCl₂, MgSO₄, Mg(NO₃)₂, ZnCl₂, ZnSO₄, Zn(NO₃)₂) + Hidrógeno (H₂)

Nota:

- HCl à ácido clorhídrico
- H₂SO₄ à ácido sulfúrico
- HNO₃ à ácido nítrico
- MgCl₂ à cloruro de magnesio
- MgSO₄ à sulfato de magnesio
- Mg(NO₃)₂ à nitrato de magnesio
- ZnCl₂ à cloruro de cinc
- ZnSO₄ à sulfato de cinc
- Zn(NO₃)₂ à nitrato de cinc

¿Qué se debe hacer?

- 1. Se escribe la reacción química con las fórmulas.
- 2. Se ajusta la reacción química.
- 3. Se calcula a un lado la masa de un mol de la sustancia que nos dan (dato) y la masa de un mol de la sustancia que nos piden (incógnita).
- 4. Se pone debajo de la reacción química la relación estequiométrica de moles que reaccionan (sólo del dato) y del número de moles que se forman (incógnita).
- 5. Se escribe debajo de la sustancia correspondiente el dato que da el problema y debajo de la sustancia correspondiente el símbolo de lo que nos piden (m para masa, n para número de moles, ...)
- 6. Una vez escrito todo lo que se puede extraer del enunciado se siguen los siguientes pasos:
 - a. Calcular el número de moles del dato:

 n° moles del dato = $\frac{\text{masa en gramos del dato}}{\text{masa molar del dato}}$

b. Calcular el número de moles de la sustancia incógnita utilizando la relación estequiométrica entre el dato y la incógnita:

c. Calcular la masa en gramos del dato:

masa en g de la incógnita = nº moles incógnita × masa molar de la incógnita

Eiemplo:

Tengamos 10 kg de aluminio que se oxidan en presencia de oxígeno. Calcula la cantidad de óxido de aluminio que se forma. Datos: $M_{AI} = 27 \text{ u}$, $M_{O} = 16 \text{ u}$

1. Se escribe la reacción química:

$$AI + O_2 \stackrel{.}{a} AI_2O_3$$

2. Se ajusta la reacción química:

Al +
$$O_2$$
 à Al_2O_3
4 Al + $3 O_2$ à $2 Al_2O_3$

3. Se calculan las masas molares de datos e incógnitas:

$$M_{Al} = 27 u \rightarrow masa molar de Al = 27 g$$

 $M_{Al_2O_3} = 27 \times 2 + 16 \times 3 = 102 u \rightarrow masa molar de Al_2O_3 = 102 g$

Se escribe la reacción química con todo lo conocido del problema: 4-5.

$$\begin{array}{cccc}
4 & \text{Al} & + & 3 & \text{O}_2 & \rightarrow & 2 & \text{Al}_2 & \text{O}_3 \\
4 & \text{moles} & & & 2 & \text{moles} \\
10 & & & & & & & & & & & \\
10 & & & & & & & & & & & \\
\end{array}$$

- 6. Continuamos el problema:
 - a. Calcular el número de moles del Al:

n° moles del Al =
$$\frac{\text{masa en gramos del Al}}{\text{masa molar del Al}} = \frac{10000}{27} = 370,4 \text{ moles de Al}$$

b. Calcular el número de moles de Al₂O₃ utilizando la relación estequiométrica entre

n° moles
$$Al_2O_3 = n$$
° moles $Al \times \frac{\text{coeficiente estequiométrico de la }Al_2O_3}{\text{coeficiente estequiométrico del }Al} = 370,4 \text{ x} \cdot \frac{2}{4} = 185,2 \text{ moles de }Al_2O_3$

c. Calcular la masa en gramos del Al₂O₃:

masa en g de
$$Al_2O_3 = n^o$$
 moles $Al_2O_3 \times$ masa molar de $Al_2O_3 = 185,2 \times 102 = 18890$ g de Al_2O_3